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Abstract

In a previous paper [1], we have presented a new linear classifi-
cation algorithm, Principal Component Null Space Analysis (PC-
NSA) which is designed for problems like object recognition where
different classes have unequal and non-white noise covariance ma-
trices. PCNSA first obtains a principal components space (PCA
space) for the entire data and in this PCA space, it finds for each
class ‘ � ’, an ��� dimensional subspace along which the class’s
intra-class variance is the smallest. We call this subspace an Ap-
proximate Null Space (ANS) since the lowest variance is usually
“much smaller” than the highest. A query is classified into class
‘ � ’ if its distance from the class’s mean in the class’s ANS is a
minimum. In this paper, we discuss the PCNSA algorithm more
precisely and derive tight upper bounds on its classification er-
ror probability. We use these expressions to compare classification
performance of PCNSA with that of Subspace Linear Discriminant
Analysis (SLDA) [2].

1. INTRODUCTION

Within the last several years, many algorithms have been proposed
for object and face recognition problems. For problems like face
recognition under small pose variations which involve discriminat-
ing similar type of objects, different classes have similar class co-
variance matrices (in particular similar directions of low and high
intra-class variance). On the other hand for “non-similar type”
classification problems like object recognition or face recognition
under large pose variation, the minimum variance direction for one
class might be a maximum variance direction for another. Exist-
ing linear classification algorithms like principal component anal-
ysis (PCA), linear discriminant analysis (LDA) and subspace LDA
(SLDA) are optimal for the “similar type” classification problems.
PCA [3] yields projection directions that maximize the total scat-
ter but do not minimize the within class variance of each class.
LDA [4] encodes discriminatory information by finding directions
that maximize the ratio of between class scatter to within-class (or
intra-class) scatter. In [2], PCA and LDA are combined to yield
a subspace LDA (SLDA) based classification algorithm for face
recognition which uses PCA first for dimensionality reduction and
then LDA. In [5], performance of PCA and LDA is compared as
a function of the amount of training data available and results are
shown on different face databases.

1.1. Problem Formulation

Consider a � -dim data sample � from class � (denote by � � ).
(Henceforth, we refer to class � as �	� ).
 ����
������ ������� ������� 
 �"!�#%$&$(' �*),+ !-#%$&$(' � � (1)

The data sample projected in an . -dim PCA space with projection
matrix,
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2143 ��
5�76 , is


98 � 62���;:< / 
2143>= 
 �@?BA� !�#%$&$ � ��� 
 � � )C+ �D� where (2)


 � � ��6E�4� < / 
E1E3 = 
 �"!�#%$&$(' � ?FA�"!-#G$&$ � ) 
 + � ��62�H6 < / 
E1E3 = + !-#%$&$(' � / 
E1E3�I� !-#G$&$(' � ),+ !-#%$&$(' � are the class mean and class covariance in the orig-
inal � -dimensional data space while

� � , + � are the class mean and
covariance in the reduced PCA space (assumed . dimensional).
For high dimensional data like images, the real dimensionality of
data (with noise removed) is much smaller than � and PCA helps
to remove directions with only noise and retain directions with
large between class variance. In this work, we address the classifi-
cation problem for the most general class covariance matrices (un-
equal, non-white) with eigenvalue decomposition + � <KJ �9LM� J =� .
LDA, on the other hand, assumes same eigenvectors for all classes
( J � <NJ ) i.e. similar directions of low and high variance while
PCA when used for classification assumes J � <PO ) LQ� <PRTS� O i.e.
the class covariances are white in PCA space.

2. PRINCIPAL COMPONENT NULL SPACE ANALYSIS

Assumptions:

1. For all classes, + � has a high enough condition number,U <WVYXQZ-[]\GVYX �_^ and hence an approximate null space
exists. This would happen for most real classification prob-
lems especially the “non-similar type” ones.

2. Distance of class mean of a class,̀ , from class mean of
class � in ANS of class � (denoted by a � ) is “significantly”
greater than zero,i.e. �b� a =� 
 �7c ? � ���d�_�]egfE�b� �7c ? � �,�_�heji 1.

Algorithm [1]:

1If this condition is not satisfied for two classes k and l , and if their null
spaces coincide, i.e. m �5n m c

, we would have o �*p(qsrQn o c p(qsr always
causing the algorithm to fail always



1. Obtain PCA Space: Evaluate the sample mean, A� !�#%$&$
and

covariance, + !-#%$&$
of the training data of all classes taken

together as one sample set. Obtain the PCA projection ma-
trix,


0/ 
2143 � 
5�76
2. Project the training data samples of each class into PCA

space. Evaluate for each class � , the class mean,
� � and the

class covariance, + � in PCA space.

3. Obtain Class ANS: Evaluate the approximate null space
 as�0� 6E����� for each class � as the ��� trailing eigenvectors
of + � (having eigenvalues V���� i	��
 VYXQZ-[ , to satisfy as-
sumption 1).

4. Obtain Valid Classification Directions in ANS: Now a � <� 
 � ' ��� 
 � ' S � IbIbI 
 � ' � I_IbI � 
 � ' ����� . A null space direction,


, is a

valid classification direction only if the distance between
class means along that direction is “significantly” greater
than zero (assumption 2) i.e.


 < 
 � ' � satisfies � 
 � � ?�Yc � = 
 ��e fE�_� � �5? �7c �b� , � `��< � ) i�� f�� � or equiva-

lently, � :<������ � � 
��  "! � � !$#�%'&�()�� � ! � � ! # � � �*�+�$,-�/. S . The PCNSA

classification matrix for class � (
/ �1032 3 ) is chosen as those

columns of a � which satisfy this condition.

5. Classification: Project the query � into the PCA space,8 < / 
E143 = 
 � ?�A� !-#G$&$ � . The most likely class, 4 , is
given by 4 <6587�93:<;>= �@?h� 
98 � , where

? � 
98 �M:< �_� / � 032 3 = 
98 ? � � �d�b� (3)

3. CLASSIFICATION ERROR PROBABILITY

We obtain error probability bound for PCNSA for a two class prob-
lem. We first evaluate error probability assuming a one dimen-
sional ANS per class so that

/ 0A2 3� < 
 a � ��6E�4� . We then show
how this can be extended to the general case of � dimensional
ANS per class. The two class error probability expressions pro-
vide a union bound for the multi-class error probability. Define B �
as the event that error occurs given query

8 �j�	� (class � ). The
average error probability is � ( ' Z�CED < 
 � 
 B �C�GF � 
 B S ��� \�H .
3.1. One-dim ANS per class

Using PCNSA’s class specific metric ((3)), the error event Bs� is

B � :< �$? S S 
98 �3�I?Y� S 
98 �d� 8 ��� � � (4)

Now since each class has a one dimensional ANS,
/ � 032 3 < aF�

and ?Y� 
98 � < � a =� 
98 ? � � �d� is a scalar. Using (2), a =� 
98 ?� � �d� � 8 � � � ����� 
 i ) V 3 032 ' � � . To upper bound on � 
 B � � , letJ <�KGL V 3 0A2 ' � (5)

Then, � 
 ? � S 
98 ��e J S � 8 ��� � � <MH 
 � ?ON 
 K ��� :<IP 
 K � (6)

where N 
 I � is the cdf of an � 
 i ) � � random variable. We chooseK large enough so that P 
 K � is small. For K <�� i , P 
 K � <�� iQ� SSR .
Now the error event B � (defined in (4)) can be split as 2,

B � < �T? SS � ? S � ) ? S � � J S �VU �$? SS � ? S � ) ? S � e J S �W �T? S S 
98 � � J S �XU �$?Y� S 
98 �Qe J S � I (7)

2Assume qZY\[ � everywhere

Thus, � 
 B � � � � 
 ? S S 
98 � � J S ��F P 
 K � I Now ? S 
98 � <� a =S 
98 ? � S �d� . Using (2) we get,] :< 0 &^  `_ � !@aE%L 0 &^Ab a 0 ^ � � 
 i ) � � . So defining,

c :< � a =S 
 � � ? � S �d� ) and R :< L a =S + � a S ) (8)

we get, � 
 ? S S 
98 �A� J S � < � 
Td �feg � ] � dQh eg � I Thus

� 
 B �C� � � 
 c ? J
R � ] � c F JR �GF P 
 K �

< N 
 c F JR �T?ON 
 c ? J
R �GF P 
 K �

< ikjl  � h�m j %j l  � � m j %
� 
onQp i ) � �q? n F P 
 K � (9)

3.2. rts -dim ANS per class

In this case a � and a S are .Ou � � ) � <v� ) H dim matrices. Define

J S <6K S 
 � aw c)x �
V S3 0A2 ' � ' c � (10)

Error event B � is as defined in (4) and can be bounded using ex-
actly the same logic as in (7). Thus we have

� 
 B � � � � 
 ? S S 
98 �A� J S � 8 � � � �yF�� 
 ? � S 
98 �Qe J S � 8 � � � �
(11)

First consider � 
 ? � S 
98 �Qe J S � . Definez 0 a :< a =� 
98 ? � � � ��� 
 i ) L 3 0A2 ' � � ) L 3 0A2 ' � diagnol (12)

then ?Y� S 
98 � < �b� z 0 a �b� S . It is easy to see that

�T? � S 
98 �Qe J S � W �8{ c8|Mc �$} ) |Mc < � z S0 a ' c � K S V S3 0A2 ' � ' c �
(13)

By (12), the components of the vector
z 0 a are independent and

hence the events
|Mc

are independent. Also, � 
o|Mc � <~� ? P 
 K �
where P 
 K � is defined in (6). Thus using (13),

� 
 ?Y� S 
98 �Qe J S � ��� ? � a�c)x � � 
o| c � <v� ? 
 � ? P 
 K ��� � a :<IP � a 
 K � (14)

Now consider � 
 ? S S 
98 � � J S � . Define� :< a =S 
 � S ? � � � and + :< a =S + �,a Sz 0 ^ :< a =S 
98 ? � � � ��� 
 i ) + � ) (15)

then ? S S 
98 � < �b� z 0 ^ ? � �b� S . Let + < J��5J = is the eigenvalue
decomposition of + . J is the � S u�� S matrix of eigenvectors
and ��< ?]�o� P 
 RTSc � is a diagnol matrix of its eigenvalues. Using J
to diagnolize

z 0 ^ , we getz �_^�� (��0 ^ < J = z 0 ^ ��� 
 i ) � � ) � diagnol (16)

Also define, c :< � J = � � (17)

Since J is orthonormal, �_� z �_^�� (��0 ^ ? c �b� < �b� z 0 ^ ? � �b� and so

� 
 ? S S 
98 � � J S � < � 
 �b� z �_^�� (��0 ^ ? c �_� S � J S � (18)



Now, it is easy to see that

�h�_� z � ^8� (o�0 ^ ? c �b� S � J S � W�� c�� c ) � c < � 
 z � ^8� (o�0 ^ ' c ? c c � S � J S �
The events � � c � are independent since elements of the vectorz � ^8� (o�0 ^ are independent. Using (9), � 
 � c � < � 
 c c ? J �z 0 ^ ' c � c c F J � < � N 
 d # h eg # �>? N 
 d # � eg # �1� , where R"Sc <M� c ' c .

Thus, � 
 ? S S 
98 � � J S � � � ^�cEx �
� N 
 c c F JR c �T? N 
 c c ? J

R c �1� (19)

Finally, combining (11), (14) and (19), we get

� 
 B �,� � � ^�c)x �
� N 
 c c F JR c �>?ON 
 c c ? J

R c �1� F P � a 
 K � (20)

4. COMPARISON WITH SUBSPACE LDA

4.1. Subspace LDA (SLDA)

Now SLDA [2] computes a PCA space for the training data of
all classes out together. In PCA space, it performs LDA, i.e. it
computes the most discriminant directions,

/ 6��53 , as
/ 6��53 <5$7�9A:<;"=��	� � & � x � 
0/ = +�
 / � \ 
0/ = +�� / � ) where+�
 < 
�
��� x � 
 � � ? A� ��� \�� and


 + � < 
��� x � + � � \�� . The

classification metric is ? � 
98 � < �b� / 6��53 = 
98 ? � �0�d�b� . The er-
ror event for a two class problem (one dimensional

/ 6��53 ) isB � :< �$? S S 
98 � �Z?Y� S 
98 �d� 8 � � � � . Error probability [6] fol-
lows using Gaussian hypothesis testing:

� 
 B ��� <t� ?ON 
��c �R � < i���j �l � 
on	p i ) � �q? n (21)

�c :< � / 6�� 3>= 
 � S ? � � �d�H ) �R :< L / 6��53 = + � / 6��53 I(22)

4.2. Comparison

Looking at expressions (9) and (22), it is clear that PCNSA error

probability can be made small if either e d <6K�� �����! �" ��  `! � � !$#)% & 0 � � tends

to zero or
d g tends to infinity. On the other hand, the LDA error

probability goes to zero if and only if #d #g goes to infinity.
We now compare the error probabilities for a best and a worst

case situation for LDA. We make some simplifying assumptions
to reduce the number of variables. We assume a two dimensional
PCA space and each class having a one dimensional ANS and
one direction of maximum variance. Also, we assume that the
eigenvalues of covariance matrices of both classes are equal, i.e.V XQZd[ ' � < V XQZ-[ ' S < V X�Z-[ and V 3 032 ' � < V 3 032 ' S < V X �_^ .
Now for the classes to be linearly separable, for any orientation of
the


 � � ? � S � direction w.r.t. the ANS-1 a � direction, the distance
between the means should be at least of the order of H � V XQZ-[ . In
our analysis below, we let �b� � �M? � S �b� < � VYXQZ-[ . With these as-
sumptions, the error probability expressions can be reduced to a
function of 3 variables: the condition number,

U < V XQZd[ \ V X � ^ ,
the angle between a � and a S , denoted by $ and the angle made
by the line joining the means (the vector

� �;? � S ) with a S , de-
noted by � . In two dimensions these two angles automatically fix

the angle between the direction of

 � � ? � S � and a � . We study

two extreme cases of $ , $ < i&% (case 1) and $ <(' i�% (case 2)
which correspond to best case and worst case scenarios for LDA.
We show that PCNSA works well in both these extreme cases as
long as the assumptions of section 2 are satisfied and fails com-
pletely when they are not.

Intuitive Comparison: We first provide an intuitive compari-
son the two cases ( $ < i ) ' i�% ) using figure 1(a) and (b). In both
figures, the condition number

U
is set to a large value (assumption

1 of section 2). We have �*)Bi in figure 1(a) and �*),+.-�% in 1(b),
both being far from ' i % (assumption 2).

Figure 1(a) (case 1), is a best case scenario for both PCNSA
and LDA since � axis is the ANS direction for both classes and the
common LDA direction( � 6��53 ) is close to the � axis (ANS direc-
tion for either class). Thus variance of both classes along � 6��53
is small. Also variance of class 1 along ANS of class 2 and vice
versa is small too and � < i % is far from ' i , . But in figure 1(b)
(case 2), the maximum variance direction of one class coincides
with the ANS of the other. This is the worst case for LDA but
PCNSA works very well in this case. This case demonstrates the
need for the PCNSA algorithm. Here, the Y axis is ANS direction
for class 1 but a maximum variance direction for class 2 and vice
versa for X axis. Thus � 6�� 3 is along the direction


 � � ? � S � .
Along � 6/� 3 both classes have a large enough variance. So LDA
will have a high error probability in this case. The region for error
event B � is ZRV and for B S is XRT. But PCNSA will still work
well because the integration region for B � is only those parts of
ellipse 1 which are closer to � S along a S (X axis) than to � �
along a � (Y axis) and similarly for B S . Thus the error region is
the small region PQRS for both B � and B S .

Comparing � 
o
10�0�2�0 � as a function of
U

and � : Now in case
1 ( $ < i�% ), aF� < a S < � i � � = . Using the simplifying as-
sumptions and definitions (8), + � < + S < ?]�o� P � V XQZ-[ ) V X � ^ � ,c < � VYXQZ-[ ����� � and RK< � VYX �_^ .

U < VYXQZ-[ \ VYX �_^ is the
condition number of either class’s covariance matrix. Substitut-
ing in (9), we get � 
 B 0A2 3� � �4365 798;:=<?> h �5 768�:=<1> � � � 
onQp i ) � �q? n :<� 
 B 0A2 3 ' 
 % # ^�� � . and the same expression for � 
 B 032 3S � so that� 
 B 0A2 3ZTCED � < � 
 B 032 3� � . We also evaluate � 
 B 6��53 � using (22).
MATLAB is used to evaluate

/ 6/� 3 for different values of
U

and� . Both � 
 B 032 3 ' 
 % # ^�� � and � 
 B 6��53 � are plotted in figure 2(a),
for � � � i ) ' i % � , and

U < � i R ) � i 
 ) � i&@ . This is a best case sce-
nario for both SLDA and PCNSA as long as � is bounded away
from ' i�% (assumption 2 of section 2 satisfied). We have for both
NSA and LDA A ;":7CB � � 
 B ) U ) � � < i ) � � �7� �I�$,�� ' i %
But,

A ;":>DBFE ,HG
A ;":7CB � � 
 B 032 3 ' 
 % # ^�� ) U ) � � < �

and,

A ;>:>IBFE ,HG
A ;>:7JB � � 
 B 6�� 3 ) U ) � �K) i I L � (23)

i.e. when � tends to ' i�% , PCNSA fails completely while the per-
formance of LDA degrades gracefully.

Now in case 2 ( $ <M' i�% ), aF�ON a S i.e. aF� < � i � � =
and a S < � � i8� = . So + � < ?]�o� P � VYXQZ-[ ) VYX �_^�� while + S <
?]�o� P � VYX �_^ ) VYX�Z-[ � . This gives � 
 B 0A2 3� � �P3 8�:=<?> hRQS T8;:=<U> � QS T � 
on	p i ) � �q? n I
For LDA, +6� < b a h b ^S < ?]�o� P � �UVXWDY h � V �[ZS ) ��VXW\Y h � V �[ZS � so
that

/ 6/� 3 is along

 � � ? � S � i.e.

/ 6��53 < � ����� � �y;"= �8� = . Thus



we have � 
 B 6��53� � < 3 � S T^ � S T������ ^	��
 ��� 
 ^���� � 
on	p i ) � �q? n . The ex-

pressions for � 
 B S � for both PCNSA and LDA have the “ ���@� ”
replaced by “ �y;"= ”. Case 2, as also discussed earlier, is the worst
case for LDA. The average error probabilities are plotted in fig-
ure 2(b). The LDA error probability in this case converges to a
non-zero value which depends on � , i.e. we get,A ;":7JB � � 
 B 6/� 3 ) U ) � � < 3 ������ ^ �^ � 
on	p i ) � �q? n F 3 �� G���� � ^ �^ � 
on	p i ) � �q? nH

(24)
The above limit is approximately the LDA curve (dotted line) shown
in figure 2(b). PCNSA still works very well in this case, i.e. we
have (using (??)) A ;":7JB � � 
 B 0A2 3 ) U ) � � < i ��� (25)

although the rate of convergence is much slower than in case 1.

5. DISCUSSION AND FUTURE WORK

Thus from the above analysis, we can conclude that PCNSA fails
for small values of

U
(no null space) or when the distance between

class means projected along ANS becomes small ( ��� ' i&% ). We
have included checks in steps 3 and 4 of our algorithm (section ??)
to avoid these two situations. For all other cases, its performance
is superior or as good as SLDA as long as the query data follows
the training data distribution. By evaluating the error probability
expressions, one can choose between LDA and PCNSA for a given
application or even use different algorithms for different class pairs
in a multi-class classification problem. Also, since PCNSA defines
a class specific metric, it has a better ability to detect “new” (un-
trained) classes. This has also been observed experimentally.

But in real applications, the model is never exact and so the
ANS calculation is never exact. ANS is more sensitive to model
variation than the LDA classification directions. So, performance
of PCNSA when compared with LDA in real applications is not
as good as that predicted by the analytical expressions. As part of
future work, we hope to do a perturbation analysis similar to that
done by [6]. We also intend to present results on real classification
applications of using PCNSA and combining PCNSA-LDA using
error probability expressions (not given here due to lack of space).
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Fig. 2. Average probability of error as a function of � for different
values of condition number

U
for (a) Case 1 (b) Case 2. As can

be seen the LDA error probability does not vary much with
U

in
either case (curves for all

U
values are coincident) and also does

not degrade much as ��� ' i % .


